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ABSTRACT

The trust region strategy provides a combination of the steepest
descent direction and the quasi-Newton direction which depends on the fit
between a quadratic approximation of the function and the function itself.

The BFGS formula is frequently used to update the Hessian of this
quadratic approximation; while this update seems the most successful in
line search algorithms, it has not been analyzed in conjunction with a trust
region strategy. We develop a trust region algorithm using the BFGS up-
date for unconstrained minimization problems; global and superlinear con-
vergence theorems are given.

We demonstrate how to implement this algorithm in a numerically
stable way. A computer program based on this algorithm has been written
and has performed very satisfactorily on test problems and on a large

number of other problems; numerical results are provided.
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1. Introduction

This paper deals with the problem of minimizing a smooth non-
linear function f: R™ + R. We derive iterative algorithms for this
problem; the algorithm starts at some starting point x0 and generates
a sequence {xk} that generally converges to a local solution of the
problem, x , such that in a neighborhood of the solution, x* is a
minimizer of the function.

In Section 2 we derive the trust region algorithm; the convergence
results of two versions of the algorithm are given in Sections 3 and 4.
In Section 5 we discuss the implementation of the algorithm and provide
numerical results.

In the development of the algorithm we assume that the first deriva-
tive of the function f is available but the algorithm makes no use of

second derivatives and instead uses approximations to them.

Notation Convention: Throughout this paper we use superscripts to
denote the iteration we are in. Thus sk is the step at the kth

iteration. In order to avoid confusion with powers of matrices we use

h

parentheses in the following way: (Bk)‘J denotes the ,jt power of the

matrix Bk where Bk is a matrix associated with the kth iteration.
We are interested in finding a local minimizer for the problem
min_ £(x). (1.1
x€ R
We will use an iterative method; starting with a point x0 we will create
a finite sequence of points {xi} i=1,...,2 where xg’ satisfies onz of
the stopping criteria that will be specified. We will assume that f is
twice continuously differentiable and that there exists a Lipschitz con-

stant K such that || sz(x)—sz(y)Il <K| x-y|] for all x,ye R"

and that f is bounded below.




At a local minimizer x  the gradient VE(x') is zero and the
Hessian matrix Vof(x') is positive semi-definite. We assume that at
every local minimizer the Hessian matrix is positive definite. 1In our
algorithms we approximate the Hessian matrix sz(x) by a matrix B.

Thus using Taylor's theorem we have for smll | s ||

£(x+8) = q(x+s) = £(x) + Vi(x)'s + £s'Bs . (1.2)

We will use the BFGS update due to Broyden (1970), Fletcher (1970), Gold-
farb (1970), and Shanno (1970) to update Bk at each iteration. If
T
K= e+ Ky - veE) and (v5) K> 0 then
k_k
gl Bk+yyk BkSSBk (1.3)
Kk F

Otherwise Bk"'1 = Bk If Bk is symmetric and positive definite then so

is Bk+1; moreover if Bk"'1 is given by (1.3) it satisfies the secant

equation Bk+1sk = yk.

A camon method of using (1.2) is to compute pk at each iteration
T
k such that p° minimizes q(xX+s) = £(x*) + VE(x) s + 3s'B%s. The

solution pk = —(Bk)_1 f(xk), the Quasi-Newton (Q.N.) step is a descent
T
direction since (p%) VE(xY) < O.
Line search techniques are often used to determine uk such that

k_ k., k
=y -p

s will be an acceptable step. One camon strategy imposes the

following. conditions: (see Wolfe (1969).

At each iteration find uk that satisfies

f(xk+ pkpk) < f(xk) + auka(xk)Tpk
vE(E + ) K > gved)Tp (1.4)

where o,B are constants such that o < %, O<a<B<1,



Under the assumptions that we made on f, there always exists an interval
[u,u] such that if ukc [w,n], both conditions are satisfied. For a
proof see e.g. Dennis and Schnabel (1980).

Powell (1976) showed that if f is strictly convex and when a BFGS
update is used to update the Hessian approximations and the two conditions
(1.4) are satisfied at each iteration, then {xi} -+ x* and the covergence

is superlinear.

2. The Trust Region Model

The quadratic approximation in (1.2) is clearly not valid for all
values of s. We will now define a sphere around the current point xk,
{x = X+s: ||s”2 < X} and call it the trust region with the interpre-
tation that we trust q only within a radius rk from xk. The determi-
nation of r® will be discussed later in this section.

We now want to solve the problem

min q(¥*+s) = £() + v£(x)Ts + 3 s'Bs s.t. ||s ||2 < =, (2.1

S
In order to obtain a solution to this problem let us rewrite the constraia:
as % sTs < é(rk)z. Then we have a convex programming problem for which
the Karush-Kuhn-Tucker conditions are sufficient ( see, e.g., Avriel). Then

if we can find s and X such that



ey + B¥s +as = 0 (2.2)
3sTs - 3r¥ <0 o (@2.3)
A(3sTs - 375 =0 (2.4)
x>0 (2.5)

s will be the global solution to (2.1). From (2.2) s =s(A) =

S+ anlered).  If (2.3) is satisfied for s = s(0) then s(0) =
(8 19£(xX) is the global solution of (2.1). Otherwise

1050 -@®?) > 0. Clearly for A >> 0, sW)Ts() - @)% < 0 and
since s(}) is a continuous function of XA, there exists A > 0 with

| é{s(A)Ts(A) - (rk)z) = 0. Such a step once again satisfies (2.2) -

(2.5) and therefore is the global solution of (2.1).

The resulting step in the k'th iteration, sk, associated with Ak<is:
£ = KoKy = - @k Tesed)
K k '
where  AK =0 if ||sK@)]] < ¥ (2.6)
K> 0 is s.t. ||sk(xk)|| = X otherwise

In the following discussion we amit the superscripts; also Vf denotes
7).
Lemma 2.2. The norm of the step s(A\) as a function of A > 0, i.e.,

||s(A)l|2 = ||—(B+AI)'1VfH2 is a continuous convex function monotonically

decreasing to 0 as A + o,

Proof. See Vardi (1980).



After a solution to (2.1) is obtained we check whether
f(x+s) < f(x). If this is not the case, we will reject the step, and
because the quadratic approximation did not prove to be reliable on the
sphere with radius r, we will lower the radius and recompute the step.

The following lemma will be needed when analyzing the algorithm.

Lemma 2.3 For any integer p > O, matrix B and g € ]Rn, we have

that AP+(B+AI)Peg+g as A +w

Lemma 2.4. Let
s.=sO(@) = - (B @)D Ve (2.7)

where A(r) is such that ||s(A(r))[], = 1 (for r < ||B-1Vf(x)||2). Then

if Vf(x) # 0, there exists r > 0 small enough such that f (X+sr) < £(x).

Proof. Let

t(r) = f(x+Sr). (2.8)

It is sufficient to show that for all r > 0 small enough, t'(r) < 0,

)
T

@

.a.;g = g{_ . g.if_ = vE(x- BAMD e TBA@ D) vE) -

Since r = || s. |l o We find that

§—§—= - T EA D e ] Y e T @) 1) PvEe

e Tenmn P
r

(2.9)




To camplete the proof we have to show that for r > 0 small enough
-1 T -2
Vf(x-(B+-A(r)I) Vf(x)) (B+—A(r)1) VE(x) > O . (2.10)

When r + 0, Vf(x- (B+ A(r)I)—]'Vf(x)) + Vf(x) and by using lemma 2.3,
(A(r))Z(Bi-A(r)I)_2Vf(x) -+ Vf(x). Thus (2.10) is satisfied.

The trust region algorithm can be viewed as a combination between
the quasi Newton direction and the steepest descent direction. The reason
is that when r >> 0, reflecting a complete trust in the quadratic approxi-
mation, the trust region includes the Q. N. step, A =0 and s = B LvE(x).
When r is very small, reflecting very little trust in the quadratic
approximation, A >> O and the term AI dominates the term B in the
expression s = -(B+-AI)_1Vf(x). (See Lenma 2.3) Therefore s = - %'Vf(x)
and this is a short step along the steepest descent direction.

Here is a first sketch of the algorithm.

Algorithm I:
Step 1: Start with x0, 1°, B°, x = -1.
Step 2: k = k+1,
Step 3: Find A¥ and s such that |[s¥]], = |]-@*aFn v ||,

f_rk and Ak(rk - !IskIIZ) = 0.

Step 4: Check if f(xk+sk) < f(xk). If not, reduce rk and return

to Step 3.
Step 5: Check for convergence. If not achieved, continue.
Step 6: Compare q(x’+s¥) with £(&K+sK) and ve () +BXsK with

Vf(xk+sk) and accordingly set rk+1.

Step 7: Compute yk

BFGS(BX,sX,yX) .

Step 8: xk+1 = xk + sk; return to Step 2.

= Vf(xk+sk) - vf(xk) and update Bk+1 =



We will analyze two versions of this algorithm. The first one
uses similar conditions to (1.4) and is the subject of Section 3. The
. second version is very close to the way the algorithm is actually imple-

mented and is described in Section 4.

3. Analysis of the First Version of the Algorithm

In order to obtain Algorithm II we first modify the definition of

sr as follows:

- (B+AD lye(x) with A > 0 s.t. | Sellg = r

)]
I

r < || BvE) | (3.1)

r

- I B'1Vf( N B_1Vf(x) when r > || B‘lvf(x)”
X
2

r

(The necessity to allow steps that are longer than Q.N. step was first
pointed out by Mike Pearlman.)

We also replace the condition f(x5+s%) < £(xX) in Step 4 by two
conditions that are similar to the conditions in (1.4).

We accept the step s? if r= rk satisfies

T k

£+ ) < £(x5) + ave (T S8

(3.2)

k, kT k k. T k
VE(x"+s) s, > BVE(X )" s,

where s? is as defined in (3.1). The imposition of these conditions

will enable us to prove global convergence for this algorithm; unfortu-
nately, it may be impossible to satisfy (3.2) if f is not convex. In
order to assure fast local convergence the algorithm will also require taking

the Q.N. step s = - B-IVf(x) whenever it satisfies (3.2).



The basic difference between Algorithms I and II is that in
II the radius does not play a significant role; the choice of the
step at each iteration can be described in terms of A only. We choose
to describe it in terms of the radius to stress the similarities between
the two algorithms. In addition, the value of rk can assist in determin-

k+1

ing an initial trial value of A at the (k+l)st iteration.

Algorithm II:

Step 1: Start with xo, ro, BO, k = -1; fix a,B such that a < 3%,

0<a<pB<l.
Step 2: k = k+1.
Step 3: Find r = rk such that if sﬁ is computed according to (3.1)
both conditions in (3.2) are satisfied. (Try first
X = || ve®)|], i.e., check whether the Q. N.
step satisfies (3.2).)

Step 4: Check for convergence. If not achieved, continue.

Step 5: Compute yk = Vf(xk+sk) - Vf(xk) and update Bk+l =
BFGS(Bk,sk,yk).
Step 6: xk+1 = xk + sk; return to Step 2.
We will show that if Algorithm II is followed then
- k :
llﬁ inf || V£(x")]] = 0. We first show that Algorithm II is well defined.
—00

lemma 3.1, Assume f is strictly convex. Then there exists an interval

[r,r] such that for all r in [T,T], f(x+s,) < £(x) + och(x)Tsr and

T
Vf(x4-sr) S, > BVf(x)Tsr. (Again, superscripts are omitted.)



Proof. Let u(r) = £(x+s_) - £(x) - a¥£(x)Ts_. For r < |[BvE()] ],

use the definition of S- in (3.1) to get

du _ du _ a(r) _

dr () ar
[-9E s ) TBA @D Vs, + aveTEn @D s ) 2 (3.3)

By using (2.9) and (3.3)

limu'(r) = lim {-[-Vf(x+sr)T(B+>\(r) I) '1sr+an(x)T(B+>\(r)I)'ls ]
r+0 0 r
A(r)-eo

e T B @D 2r 1Y Y e T B @D v 1.

= [v£00) TvEx) 1Y 2 (-1+0) / [9E00) TVE) ] < 0

Since u(0) = 0, we obtain,for r > 0 small enough, u(r) < 0. If for all

r> 0 u(r) < 0, using the definition of s_ for r > |[B™'v£(x)|| in (3.1),

we would get a contradiction to the assumption that f is bounded below,
Let T be the smallest r > 0 such that u(r) = 0. Let v(p) =

f(x+es=) - f(x) - eoNf(x)Ts . Vv 1is convex. Moreover, v(0) = v(1) = 0.
T

o}

Hence v'(1) = VE(x+s ) s_ - av£(x) Ts_ > 0. Thus v(x+s_)Ts_ >
T 7T T T T T, T |

aVf(x)'s_ > BVf(x)'s_. Because Vf(x+srj S, - BVE(x) s, 1s continuous in

T T

=

_ - - T
r, there exists an T ¢ (0,7) such that for all r ¢ [T,T], VE(xts )'s_ >

>
ps

BVf(x)Tsr. Because u(r) < 0 for all 0 < r < T, both conditions are

satisfied in [T,T].
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From now on we assume that at each iteration we can obtain a radius
r that satisfies (3.2). The line of proof of global convergence is

very close to Powell's (1976, Section 3). Lemmas 3.2 and 3.3 are

proved there.

Lemma 3.2. Assume [|V2f(x)[| < for x in the level set {x: f(x) :_f(xo)}.
Let yk = Vf(xk+sk) - Vf(xk). Then we get the inequality

12/ 9% < v.

Loma 3.3. Assume that | [V2£(0)|| < ¥ on {x: £(x) < £(xD)}.

1 B = Bros(8X,s,y%) then

D32 AT
k HBJSJ” '?J }’J < (C )k

j=1

for some constant C4 >0 and for all k = 1,2,... .

Lemtma 3.4. For all j

B ey

7 - . (3.4)
I BIsHE (83 v )
Proof. See Vardi (1980).
Using now Lemma 3.3 and Lemma 3.4, we obtain the inequality
. 2 T .
k ||Vf(xJ)l sd yJ
i <Ck W¥k=1,2,... . (3.5

=1 () (-veed)))’ 4

Since at each iteration the B condition in (3.2) is satisified, i. e.,
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Vf(xj+sj)Tsj Z_vi(xj)TsJ

we have T
y) s) = [vE(xde o3y - vEeD))s) > -(1-8)vE() TsT (3.6)

From (3.5) we obtain

ko [lvEeeh ]t ¢ ko,
H (T:E) = CS V’k=l,2,... . (3.7)

L3 e

Theorem 3.5. Assume that for all x in the level set {x: f(x) i_f(xo)}

|[V%£() || < . Then 1im inf || ve(x5)| = o.
k-

Proof. Let o7 be the angle between sj and -Vf(xj). From (3.6) we have

]l; HVf(XJ)H Ck k=1 2
R . . < = s N . (3-8)
=1 [1s)] fcos (o)) °
Recall that the o condition in (3.2) gives at each iteration
f(xj+sg) :_f(xj) + an(xj) TSﬂ.
Thus
k
a z sJ (Vf(ﬂ))<f(x) CEE) ¢ £ - ) + ...
J—-
+ 265 - 26
< £ - £,
© jT .
f is bounded below and therefore |} s, (—Vf(xJ)) is convergent. Hence
j=1
Z |]s J)]] cos(eJ) is convergent and ||s J) A-cosej

converges to zero as j tends to infinity.
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If we assume now that llvf(xj)ljis bounded away from zero we
get a contradiction. We then have []si ||-cos(ej) J3® 0 so that
(196 11711183 1] +cos(67)) J3® », This implies that for all suffi-
.cos(87)] > 2C;. Thus there exists

ciently large j, [|lvf(xj)||]/[[|5£ |

k such that
k ||vE)] K
1 =3 5%
j=1 ||sr || +cos(8”)
which contradicts (3.8). The conclusion is that 1im inf || V£(x9)] = O.
Jooo
Corollary 3.6 When f is a convex function,if the sequence {xk} has

a limit point x* then x* is the global minimizer of f. In particular,
if f also has a bounded level set, then the hypothesis of the theorem

*
holds and xk + x , the global minimizer.

We now establish the local properties of algorithm II. We will assume,
based on our global results, that lim xk = x*, a local minimizer, and that
sk ¥ 0 for all k. The main tools to establish local convergence have
been established in a classic paper by Broyden, Dennis and Moré (1974).

Lemma 3.7 and Theordam 3.8 are proved there.

[sz(x*)ll/z. “Define the matrix norm|[C][y = ]|MCM||P where

= PR
o1l =/ 2 &

We will also use the fact that there exist a constant n > 0 such that

Let M

| 1Dl

for every n x n matrix A,

HAlg < nl Al (3.9)
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Lemma 3.7. For all u,v e R

[[7£() - vE(v)

where o(u,v) = max{||u-x*||,||v-x*||}. Furthermore, if sz(x*) is
- invertible, there is an ¢ > 0 and p > 0 such that o(u,v) < € implies

that 3 ||v-ul| < ||VE() - VE@)|] < o] [v-ul|.

Theorem 3.8. There exist € > 0, 8§ > 0 such that if |[x-x*|| < ¢,

HB'l - sz(x*)'1|]M < § and x* = x+s for some step s, B" = BFGS(B,s,y)
where y = Vf(x+s) - Vf(x), then B' is nonsingular and there exist o > 0,
a, > 0, az > 0 such that

D™ - 726 7y < /10067 + a1 [ Ev2 0 2,

+oc30(x,x+) (3.10)

1B w250 Ly

1B w250 Y e LYy |

where 9§ =

The following theorem guarantees that in a neighborhood of the solu-

tion the Q. N. step s = —B_1Vf(x) will satisfy (3.2).

Theorem 3.9. There exist positive e and § such that if ]lxo-x*ll < ¢ and

< & then for all k, K ll(Bk)'1Vf(xk)l| satis-

iy
fies both conditions in (3.2). Furthermore, if xk 1. xk

Ha)™ - vPeen
. (Bk) “Log 5y

k+1 k k k k+l

and B = BFGS(B™,s ,y), then le -x*l] <eand ||(B -
VZf(X*)- IIM < 2§ for all k. Finally, ]|x -x*|| j,tllx -x*|| for

0 <t<1 for all k so that {xk} converges to x* linearly,
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Proof. This theorem is similar to theorem 3.4 in Broyden, et al. (1973)
and can be found in Vardi (1980).

Lenmma 3.10. Let {¢k}, {ék} be sequences of nonnegative numbers such that

-]
¥ < (1+6¥96% + X for all k and ] oK <

k=1

©, Then {¢k} converges,
Proof. See Dennis and Moré (1974, lemma 3.3).

Corollary 3.11. Under the conditions of Theorem 3.9,

@™ - e, converges.

k+1

Proof. From ||x - x*|| :_tllxk - x*|| we conclude that

©

I oK - xr] < | (3.11)

Hence fram (3.10) and lemma 3.10 the conclusion follows.
Theorem 3.12 will be a step in showing superlinear convergence to x*,

This theorem is proved in Dennis and Moré (1974).

Theorem 3.12. There exist € > 0 and § > O such that if || xo-x*H < g,

118% L -v2£) ], < 6 then

LB Lv2e ety 1yK| |
im = ()
ko Rl

(3.12)

k

where y* = vy - ve®) vk=1.2,... .
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Theorem 3.13. There exist € > 0, § > 0 such that if |1:0-x%|] < e,

|[(BO) 1 sz(x*) '1| |M < & then g-superlinear convergence is achieved,

i.e.,
k+1
T xA]
lim X = 0.
koo | [x7ex*||

Proof. Let €,5 be as in Theorem 3.9. Observe that

E-v2e )]sk = (185 PE o) Ly vPeomy oK)

B89 LvPe (e TIyK,

This implies

| (BR-ve ) 155 ]| | 1-BNPe ey T |- |y -vReenysK |

<

k - k
[I1s™] [s™[]
k k-1 .2 -1, k k
B ]|. B -Vo £ (x*
LRI (x*) ]>'H.H>'|l (3.13)
k k
hal Hs™i
Lemmas 3.2, 3.7, Theorem 3.12 and the assumptions imply that
|| (BX-vP£(x#) )] |
=0, ‘ (3.14)

lim
koo | |sk| ]

e and § were chosen in Theorem 3.9 such that for all k, sk = -(Bk) 'IVf(xk).
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Thus
(B2 ek ]sK = -ve) PP e sk = yKvPeeeny sk - vexKtLy
Thus lemma 3.7 and the limit in (3.14) imply that
k+
ve |
1lim %, = 0. (3.15)
koo [1s™}]

Now lemma 3.7 also guarantees that because sz(x*) is positive definite,

if € is small enough there exist p > 0 such that
k k+1 1 k+
v£e Dy || = (1o - veee || 2 21X xx] |

and therefore

k+1 k+1 k
HveS D (19 ] 1/0] K| L«
K = k+1 K, = K+l k .’
1511 1T | T ] [ ] [xexr ]| P 1K
where 1% = |]xk+1—x*] l/] [xk-x*l |. Thus (3.15) implies that Tk/(l+Tk)

k .
converges to zero and hence 1 converges to zero as desired.

4. Algorithm III and its lLocal Properties

In order to obtain Algorithm III, we only have to clarify Step 6
in Algorithm I. Step 6 now becomes

-

T
K12 2] 18] i 10 [vETSK ¢ 35K BRK) > £es®) £y
k+1 X k.T k KLk k kK k. ..k
T = ||s7]| if 0.1[VE(x)'s + 3s B's] > f(x +s)-f(x)
T 4.1)
> 10[Vf(xk)Tsk + ‘:3:5k Bksk] F
T,
31K i £edes ) £68) 5 0.11vE TSR 3 s BRY

J
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+
The following lemma guarantees that K > |l

solution.

Lemma 4.1. There exist positive € and ¢ such that if ||x-x*|| < ¢,

| [x+s-x*|| < € and ||B-1-V2f(x*) 'll IM < 28 then
T T
f(x+s)-f(x) < 0.,1[VE(x)'s + %s'Bs].
Proof.

19E)Ts + 35Bs] = -[vEE) T (B+AI) L (B+AI)s + 45 Bs]

2
Hs ]l
TBs> II

= STt

(M

= -[-sT(B+)\I)s + %_-sTBs] > %s

f(x+s) - f(x) - vf(x)Ts - 3T

Bs = 1 sT(vzf(x+\)s) -B)s for some v ¢ [0,1].

By using the triangular inequality and the Lipschitz condition we obtain

£(x+s)-£() -VE() s - 3 sTBs < &][s]|2[]|B-vEEGxR) | |k (] [x-x*] [+] 5] D).

Choose positive €,6 such that ||x-x*|| < e, ||x+s-x*|| < € and HB'l -
2 - . -

VEECe) 1y < 26 tmply 0.9/[[B7H | > ||B-vP£Ge%) | [+K (| x-x*] [+ [s]]).
Now, if ||x-x*|| < e, ||x*+s-x*|| < e and HB'l-sz(x*)-l]lM <26

’

£(x+s)-£(x) = £(x+s)-£(x)-VE(X)'s - 4 sTBs + (vE(x)Ts + 3sTBs)

< 3|]s| IZ[I IB-sz(x*)] [+K (] |x-x*| |+]|s] |)]+(Vf(x)Ts+ 3 sTBs')

+(Vf(x)Ts + %STBS) < O.I(Vf(x)Ts + %sTBs).

0.9
< 3llsl]? —=
- 18741,

The following theorem guarantees q-superlinear convergence of the

algorithm in a neighborhood of the solution.:
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Theorem 4.2. There exist positive ¢ and § such that if ||x0-x*ll <e

and || (B) 7 -v?£(*) ||, < 6 and if Algorithm III is followed, then

for all k |[x"-x*|| < ¢ and || &) 1-vP£(c*) "} |, < 26. Further, there

exist & large enough such that A€ = 0 for all k > &. Finally,

Lok | < e [xKex*|| for 0 < t < 1,

Proof. By induction.

Let e, 6, be the ¢ and & from theorem 3.8. Let ¢g,, §, be the

1> 71

¢ and § from lemma 4.1. Choose y > ||v2f(x*)'1||, o> ]IVZf(x*)Il,

and £ > 0. Let g5 be such that |[|x-x*|| < e; implies that [|VE(x)|] < &.
Let ¥ = ¢/10, where 1 is the initial radius, Let q=3/[X1/(Zén;*v)]

where n is defined in (3.9). Let 63 be such that |]B'1- vzf(x*)'lllM <

28, implies ||B"1Vf(x*)|| < 1/vq. Let t* ¢ (v/q,1) and let

5 = min{61 5, &, mniy,t*- @}
Let €4 be such that

(20,6 ) T

0,6 + ag)e
2° %7t

1-max{},t*}
and ( (4.2)

28no + (Y+2n6)K£4 :_minf%,t*-/a'}

P,
Let € = min{e) ,€,,65,€,}.
1£ 3% > 0 then ||s?]] = |1-@%%n Tuex® ] = 0. Thus 20 <

A% < T Note that II(BO)-III

119£x%) [1/1° and since | |x%-x*|| < €,

0 'l_vz

< 1% ey L] [+ [Py | < 2néey. Now
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[t xx | = X0 @220 "Lvg(f) -xx ]|

= 11- %01y e k0 -vE %) -vP (%) (<0 x*) ]

+ 920 1o 8% el et (0-xh)

+ 1% %01 1vte o) P ||

B 1 1vee0)-veexty -ve ) 928 %) 60-x4) ||

A

11D Tvle e | 1vPEen) || 1 ]x0-x%] |

= 00 OB I Y e ] 10 .

We now use lemma 3.7 and (4.2) to get

| xtx*|| < [(2n6+y) K] [x"-x%) || + 2n6+0 + q -/l_n |x"-x]|

q

< t*]lxo-x*|l.

Thus []xl-x*[[ <e.

We next use theorem 3.8 to show (as in theorem 3.4 in Broyden,
et al. (1973))that ||(B1)'1-V2f(x*)'1||M < 28. We also notice that
lemma 4.1 and Step 6 as set in (4.1) imply that t z_llsoll.

Similarly, we can show by induction that if ||xJ-x*|| < ¢ and || (®%)™}
-sz(x*)'lllM < 28 for j=1,2,....k then |ka+1—x*|| f_t*llxk-x*ll < e,
1@ v ) |, < 26 and T 5 []sK]|. bserve that

K 1k k+1 K
¥kS = X ] < Taxm] ] ||

koo

< 2P| < 2] | o (4.3)
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There must therefore be an £ large enough such that o=, Otherwise

A€ > 0 for all k implies that ||sk|| = K 3_r0 for all k and this contra-
dicts (4.3).
M e | = M- 8% osed) x#] |
< HEH I et vty 925 0e%) (F-xt) ||
1N v | TG || ] 1 -x] ]

< [@nsykl X -xx|| + n8e0] ] [x"-x#]|

<1]lxtxr| <. (4.4)
Also

HEh ™ - Pran ™)y <

In addition, we have

L+ 1 2 2+1
s st = | Ix > b || - M x|

| v

2 =t (4.5)

k

We will show now that X 0 for all k > 2. By induction, it is

sufficient to prove that AQ+1 = 0., Observe first that we can show in a
L
similar way to (4.4) that |[x£+1 B** Ly-lgedt* -x*|| <3 |x +l-x*||.
Thus
L+ 2+1 2+1 _R+1.-1 241, A+l
- Teeat ™ ] = 1@ et T |
< I st x| (x|
+1 _* ' Lk 2 ¥ f+1
Syl ex s s llx-x | <3 Ix-x <

From the definitidon of the step (see Algorithm I, step 3), we see

that A = 0.
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We complete the proof by induction. If ||x?-x*|| <€,
j - . k+1
||(BJ)'1-V2f(x*) 1”M < 28 for j=1,2,...,k and A = 0, then ||x" ~-x*||

<1] |xk-x*|| <eg, H(Bkﬂ‘) '1-V2f(x*)|| <6 and A . This completes
-3

the proof of the theorem.

Corollary 4.3. The sequence {xk} generated by Algorithm III when

on—x*ll < ¢ and ||(Bo) -1-V2f(x*) '1H < § converges q-superlinearly.

Proof. Same proof as in the case of Algorithm II. See Theorems 3.12

and 3.13.

5. Implementation

Algorithm I is an iterative one. Steps 3-8 describe what happens
in each specific iteration and will be discussed here in detail. Since
Wwe confine ourselves in this chapter to one specific iteration, we omit
the superscripts.

We want first to comment briefly on scaling. Generally speaking,
problem 1.1 is said to be badly scaled if comparable changes in two
coordinates of x 1lead to very different changes in the function f.

That can happen when the Hessian matrix of f has a large condition
number. When we use the Euclidean norm in (2.1) we have actually assumed
that the problem is well scaled. By using a different norm it is possible
to have a trust region with an ellipsoid shape rather than a sphere. The
solution of (2.1) would then be s = -(B+ X diag(d) )_IVf(x) where d is
some positive vector that reflects the scaling of the problem. The theory
of convergence that we presented would still hold for this model. We
assume that the variables have been scaled if necessary so that the

Euclidean norm is appropriate.
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We use the Cholesky decamposition of B, B = LLT. The initial L, L0 is

set to the identity matrix multiplied by the constant 0.1(]| Vf(xO)H /ro)%.
In each iteration instead of deriving Bk+1 from Bk, we will derive
L#+1 from .Lk.

Step 3 of the Algorithm:

Assume we are in a new iteration at the point x and have already
observed f(x), Vf(x). Also available are a lower triangular matrix L
and the radius of the trust region. We wish to find a step s as de-
fined in step 3 of the algoritim.

We use the notation
-1 _ T -1
s(A) = - (B+AI) "Vf(x) = - (LL"+AI) "Vf(x).

We first compute the Q. N. step s(0) = —L_TL_1Vf(x) and hence || s(0) ||
If ||s(0)]] < T then A = 0 and we can go to the next step. If ||s(0)]]>r
we have to find X such that ||s(A)|]| = r. Define now the function ¢ (A)
by ¢(\) = ||s(A)|] - r; we want to find a zero of this function. From
Lemma 2.2 we can conclude that ¢ (A) is continuous and convex. ¢(A) de-
creases montonically to -r and has a unique zero because ¢(0) > 0. We
know more about the zero, X*, of this function; since ¢(X*) =
|- B *1) tvE(x) | |-T = 0 we have A¥ < ||Vvf(x)]|/r. Also because of the
convexity of ¢, A* > -¢(0)/¢'(0). All this information leads to the
following iterative process that will converge to a A > 0 such that
[¢6(X)] < 0.1 x r. This iterative process was first suggested by Hebden

(1973) and Moré (1978) for Nonlinear Least Squares problems.
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step 1: Let 80 = -6(0)/6' (0, ¥ = ||v£O) | |/x.
Let AO be a guess of the solution (which is determined in
the previous iteration of the algorithm; see below).

Set j = 0.

Step 2: If 2 does not lie between &) and uJ,

A = max{0.001u7, (23 -3y %),

Step 3: Compute ¢(Aj) and if |¢(Aj)l < 0.1-r, stop.

Step 4: Llet
(i, j
gL 3 if ¢(A.) <0
AV if o)) > 0
Sl [0 i end) <
LuJ if o(07) >

Step 5: Compute ¢'(Aj) and set

)\j"'l = )\j - ¢(>‘J)+r ¢(}‘le ;3 o= j+L;
T ¢' (A7)

go to step 2.

It may happen rarely that the A-iterative process does not converge
fast enough. We will allow only ten A-iterations and accept the tenth
iteration even if the condition in step 3 is not satisfied.

In our numerical experiments it took 1.6 A-iterations per x~iteration,
on the average, before convergence in step 3 was achieved.

For the different A's that appear in this A-iterative process we

have to determine ¢(A), ¢'(A). We have

600 = | sMly- T = (72 BAD Zvze 1 - (5.1)

8 () = - [VEGO) T BAD) e 1/ [VEX) T (B D) B0 (x) )Y 2
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s(\) is the solution of the system (LLT+}\I)5(>\) = -yf(x), which

can also be written as

LT T T o T T ulveo 5.5
s(A) = .
W) WY 2 0 J

To solve this linear least squares problem we have to find a (2nx 2n)

orthogonal matrix P and an upper triangular R such that

LT R 5.4
P = .
A2 0

We note that L'IVf(x) that appears in the right hand side of (5.3)has
already been computed. Also notice that because of the special structure

of the matrix

o)
kl/zI

it is possible to apply Givens transformation to this matrix to zero its

3

lower part (A“I) without introducing zeroes in the lower triangular

part of LT. We do not have to store P; the camputations that have to
be done with P will be done while the decomposition is taking place.
Let us partition the matrix P into two nxn matrices P =[=§]

Now we have from (5.4)

LT "
- PR
A1/2

and from (5.3)
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s(A) = - [Ll/zl] Ll/zIJ] W12 0 ]

. -1
-1 L “VE(x)
L vE _
- - RTRIIRTP [ (x)} = rIP (5.5)
0 0
Also fram (5.2)
o' = - —— s TEAD s ()]
Hs) ]
= - —2 _s® T = syl 8T SAL ). (5.6)
[Is )] | sl

Thus in steps 3 and 5 of the JA-iteration process we use (5.5) and (5.6)

to campute ¢(A) and ¢'(A).

Steps 4-6 of the Algorithm:

We have three tests that are designed to check three stopping
criteria: The f convergence test, Vf convergence test and x convergence
test. In the program the user is asked to specify € >0, €, >0, € >0

and funmin - a lower bound on the function.

f convergence test - stop if f(x) - funmin < €1
Vf convergence test - stop if ||VvE(x)]| < €,

X convergence test - stop if ||s|| < 63(||X||+1).

The user's €15 €95 €3 should depend on the required accuracy in his

specific application. For the test problems we use ¢, = 10-8, €, = 10'5,
and €5 = 10 on our 1BM/370.
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After sk is accepted and xk+1 = xk + sk the program has a

1

+ . + k+
series of tests to compare q(xk 1) with f(xk 1) and Vq(x )

2
with vE(x*'1). The new radius is set to K+ - {1} *|| skH
2

+
according to the fit. If f(xk+1) << q(xk 1) we recampute the

step with rk = 2rk before moving to the next iteration. If
f(x+) > f(x) we set rk = %rk and recompute the step. For complete

details for assessing the quadratic model see Vardi (1980).

Step 7 of the Algorithm'

Assume first that s and y have been computed and sTy > 0.
We want to obtain B' = BFGS(B,s,y). We have a Cholesky decamposition
T
of BB=IL'. Let J% be such that J'J° = B'. Dennis and Schabel

(1980) derive the BFGS update by
J =L+ (y-Lv)vT/vTv

T

where v = (yTs/sTBs)l/ZLTé. Let us take a Q-R decomposition of J* , i.e.,
T
find Q+ and L* (Q+ orthogonal, L’ upper triangular) such that

+T T + 4T + +T

JV=qitt . mus BY = g'0" ="t and this gives us the Cholesky
decomposition of B+.

T
let w= (y-Lv)/[|v]l and z=v/[lv]. Then 4% =1T+a. LT

is already an upper triangular matrix and ZQT is a matrix of rank one.
T
Getting a Q-R decomposition of J+ by using Givens transformations is

therefore much cheaper than the 5n3/2 operations that a Q-R decompsi-

tion require if we made no use of this information. For details see

Dennis and Schabel (1980). When s'y < 0 we do not update and take

Lf =1L
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The program contains a subroutine that obtains a rough estimate of
the condition number of B by checking that the ratio between the largest
diagonal element and the smallest diagonal element of L is no greater
than a prescribed bound. If the ratio is too high the column that con-

tains the smallest diagonal element is changed.

Testing the program:

The program has been tested extensively with test problems that
appear in the literature and with problems that were provided by users
at Cornell University.

We give the results of four test problems that are often used to
test minimization codes. Comparisons of our code, FMIN, with Dennis-
Mei's MINOP, Powell's MINFA, Davidon's OCOPTR and Fletcher's VMMO1 are
made. MINOP and MINFA use, as does our program, an initial radius.
Since MINFA's results were reported (by Dennis and Mei (1979)) with one
specific rO we use this rO.

Problem 1: Wood's function

£(x) = 100,307 + (1x)% + 900x, %)% + (1-x,)°
+ 10.1[(x, )% + (-2 + 19.8(x,71) (x,-1).

Four starting points; ro = 10.

Problem 2: Rosenbrock's function

4
£(x) = 100 @Ex)? + (1-x)?

Five starting points; ro = 3,

Problem 3: Box's 2-variable function

i _ i )
0= Tl TV .o 2T L 10, otiyy2
i=]1

Five starting points; xp = 3,
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Problem 4: Powell's 4-variable function
= 2 _ 2 _ 4 Y
f(x) = (xl+10x2) + S(x3 x4) + (x2 2x3) + 10(x1 x4)

Three starting points; ro = 3,

In the next table we report the number of functions and (in

parentheses) gradient evaluations for each of the algorithms.
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Table of Results

\

Problem Starting
Number  Point FMIN MINOP MINFA OCOPTR VMMO1

1 (-3,-1,-3,-1)  66(44) 71(61)  117(117) 72(50) 129(129)
(-1.2,1,1.2,1)  81(39) 59(50) 73(73)  83(61)  64(64)
(-3,1,-3,1) 47(31)  45(35) 94(94)  83(62) - 115(115)
(-1.2,1,-1.2,1) 131(76) 117(103) 119(119) 138(95)  94(94)

2 (-1.2,1) 27(18)  28(25) 37(37)  54(43)  28(28)
(2,-2) 41(28)  43(42) 39(39)  45(41)  20(20)
(-3.635,5.621)  38(27)  56(54) 39(39)  56(50)  70(70)
(6.39,-0,221)  32(19) 61(60) 68(68)  35(32)  74(74)
(1.489,-2.547)  46(30)  39(36) 43(43)  54(47)  28(28)

3 (5,0) 28(15)  23(20) 20(20)  16(24)  24(24)
(0,0) 19(14)  18(16) 27(27)  18(17)  21(21)
(0,20) 29(18)  28(25) 21(21)  19(16)  21(21)
(2.5,10) 12(4) 8(5) 19(19)  15(14)  16(16)
(5,20) 26(12)  23(17) 36(36)  26(25)  28(28)

4 (3,-1,0,1) 33(28)  37(35)

(-0.1,1.-0.1,1) 33(25)  25(23) - - i

(-0.6,1,-0.6,1) 35(29) 27(25)
(not available)
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